12,884 research outputs found

    Frequency-domain sensitivity analysis of stability of nonlinear vibrations for high-fidelity models of jointed structures

    Get PDF
    For the analysis of essentially nonlinear vibrations it is very important not only to determine whether the considered vibration regime is stable or unstable but also which design parameters need to be changed to make the desired stability regime and how sensitive is the stability of a chosen design of a gas-turbine structure to variation of the design parameters. In the proposed paper, an efficient method is proposed for a first time for sensitivity analysis of stability for nonlinear periodic forced response vibrations using large-scale models structures with friction, gaps and other types of nonlinear contact interfaces. The method allows using large-scale finite element models for structural components together with detailed description of nonlinear interactions at contact interfaces. The highly accurate reduced models are applied in the assessment of the sensitivity of stability of periodic regimes. The stability sensitivity analysis is performed in frequency domain with the multiharmonic representation of the nonlinear forced response amplitudes. Efficiency of the developed approach is demonstrated on a set of test cases including simple models and large-scale realistic blade model with different types of nonlinearities, including: friction, gaps, and cubic elastic nonlinearity

    A method for parametric analysis of stability boundaries for nonlinear periodic vibrations of structures with contact interfaces

    Get PDF
    A method for parametric analysis of the stability loss boundary has been developed for periodic regimes of nonlinear forced vibrations for a first time. The method allows parametric frequency-domain calculations of the stability loss together with the vibration amplitudes and design parameter values corresponding to the stability boundaries. The tracing algorithm is applied to obtain the trajectories of stability loss points as functions of design parameters. The parametric stability loss is formulated for cases when: (i) the design parameters characterise the properties of nonlinear contact interfaces (e.g. gap, contact stiffness, friction coefficient, etc.) and (ii) the design parameters describe linear components of the analysed structure (e.g. parameters of geometric shape, material, natural frequencies, modal damping etc.) and (iii) these parameters describe the excitation loads (e.g. their level, distribution or frequency). An approach allowing the multiparametric analysis of stability boundaries is proposed. The method uses the multiharmonic representation of the periodic forced response and aimed at the analysis of realistic gas-turbine structures comprising thousands and millions degrees of freedom. The method can be used for the effective search of isolated branches of the nonlinear solutions and examples of detection and search of the isolated branches are given: for relatively small and for large-scale finite element models. The efficiency of the method for calculation of the stability boundaries and for the search of isolated branches is demonstrated on simple systems and on a large-scale model of a turbine blade

    Mathematical Models of Video-Sequences of Digital Half-Tone Images

    Get PDF
    This chapter is devoted to Mathematical Models (MM) of Digital Half-Tone Images (DHTI) and their video-sequences presented as causal multi-dimensional Markov Processes (MP) on discrete meshes. The difficulties of MM development for DHTI video-sequences of Markov type are shown. These difficulties are related to the enormous volume of computational operations required for their realization. The method of MM-DHTI construction and their statistically correlated video-sequences on the basis of the causal multi-dimensional multi-value MM is described in detail. Realization of such operations is not computationally intensive; Markov models from the second to fourth order demonstrate this. The proposed method is especially effective when DHTI is represented by low-bit (4-8 bits) binary numbers

    Transient currents in a molecular photo-diode

    Full text link
    Light-induced charge transmission through a molecular junction (molecular diode) is studied in the framework of a HOMO-LUMO model and in using a kinetic description. Expressions are presented for the sequential (hopping) and direct (tunneling) transient current components together with kinetic equations governing the time-dependent populations of the neutral and charged molecular states which participate in the current formation. Resonant and off-resonant charge transmission processes are analyzed in detail. It is demonstrated that the transient currents are associated with a molecular charging process which is initiated by photo excitation of the molecule. If the coupling of the molecule to the electrodes is strongly asymmetric the transient currents can significantly exceed the steady state current.Comment: 17 pages, 12 figures, accepted for publication in Chemical Physic

    Development of Nonlinear Filtering Algorithms of Digital Half-Tone Images

    Get PDF
    This chapter is devoted to solving the problem of algorithms and structures investigations for Radio Receiver Devices (RRD) with the aim of the nonlinear filtering of Digital Half-Tone Images (DHTI) representing the discrete-time and discrete-value random Markovian process with a number of states greater than two. At that, it is assumed that each value of the DHTI element is represented by the binary g-bit number, whose bits are transmitted via digital communication links in the presence of Additive White Gaussian Noise (AWGN). The authors present the qualitative analysis of the optimal DHTI filtering algorithm. The noise immunity of the optimal radio receiver device for the DHTI filtering with varying quantization and dimension levels is investigated

    Worldsheet Matter Superfields on Half-Shell

    Full text link
    In this paper we discuss some of the effects of using "unidexterous" worldsheet superfields, which satisfy worldsheet differential constraints and so are partly on-shell, i.e., on half-shell. Most notably, this results in a stratification of the field space that reminds of "brane-world" geometries. Linear dependence on such superfields provides a worldsheet generalization of the super-Zeeman effect. In turn, non-linear dependence yields additional left-right asymmetric dynamical constraints on the propagating fields, again in a stratified fashion.Comment: 15 pages, 2 figures; minor algebraic correction
    • …
    corecore